Insight Calibration and Troubleshooting Manual
TABLE OF CONTENTS

Introduction.. 3 1.1 Overview and Preparation .. 3 2.1 System Self-Test .. 4 2.2 Display Console Problems .. 5 2.3 Fault Reporting and Fault Codes ... 6 2.3.1 Group “A” Fault Codes .. 7 2.3.2 Group “B” Fault Codes .. 7 2.3.3 Group “C” Fault Codes .. 8 2.3.4 Group “D” Fault Codes .. 8 2.4 “No Fault Code” Problems ... 9 2.4.1 Anti-Two-Block Alarm (ATB) .. 9 2.4.2 Displayed Load or Radius Errors 9 3.1 Computer Unit Overview .. 12 3.2 Computer Unit Layout ... 12 3.3 Internal Status Indicators .. 12 3.4 Function Kickout Fuse (FUS1) .. 13 3.5 Replacing the Computer Unit ... 13 4.1 Display Console Overview ... 14 4.2 Checking the Display Console ... 14 4.3 Unresponsive Buttons .. 14 4.4 Connectors .. 15 4.5 Horn .. 15 4.6 Moisture ... 15 4.7 Replacing the Display Console .. 16 5.1 Calibration Mode .. 17 5.2 Entering the Calibration Mode .. 18 5.3 Calibration Menus .. 19 5.4 Calibrating the Extension Zero .. 20 5.5 Calibrating the Angle Sensor Zero .. 22 5.6 Calibrating Span of Extension ... 24 5.7 Calibrating Span of Angle ... 26 5.8 Rope Limits ... 28 5.9 After the Calibration Routine .. 29 6.1 Reeling Drum Overview .. 30 6.2 Checking the Reeling Drum Cable Layering 31 6.3 Sensor Baseplate Assembly .. 32 6.4 Anti-Two-Block Function Overview 34 6.5 Checking the Reeling Drum Cable .. 34 6.6 Checking the Anti-Two-Block Circuit 34
Introduction

The Greer Insight system is an aid to crane operation. The operator must be knowledgeable in safety guidelines, crane capacity information, and the crane manufacturer’s specifications.

This manual describes the setup, operation, and maintenance of the system. Read the instructions in this manual.

1.1 Overview and Preparation

This manual provides general information and methods for isolating problems that may happen during operation. Service personnel should have previous training and experience in the procedure for setup and operation of this system. Some problems may require replacing or returning parts to the factory for servicing.

Tools necessary:

- Tool kit consisting of wrenches and screwdrivers (flat and Phillips’)
- Digital level accurate to 0.1°
- 150-200 ft tape measure graduated in tenths of a foot
- Digital multimeter

NOTE: Low-cost analog multimeters are not appropriate; their input impedance may give inaccurate readings.
2.1 System Self-Test

When the power is turned on, the system performs a self-test. This verifies the computer, display console, cable, and sensors are working properly. During the self-test, the display will show the expected crane model, load chart number and units of measurement.

After the load chart screen, the display will automatically go to the home screen.

If the above does not occur, refer to Display Console Problems.
2.2 Display Console Problems

Display console problems can be difficult to isolate due to the interaction between the display and the computer unit. Failure of either unit or the cabling connecting the units can cause a malfunction.

To solve problems using the display indications, observe the display at power up and through the self-test. Use the following chart to help with the diagnosis:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no display indications in any of the windows when the power is turned on. Or a “No Communications” message appears.</td>
<td>Refer to Internal Status Indicators.</td>
</tr>
<tr>
<td>The display unit does not cycle through the self-test. The data in the display windows appears jumbled with missing segments.</td>
<td>Replace the display unit.</td>
</tr>
</tbody>
</table>
2.3 Fault Reporting and Fault Codes

System fault codes provide ways to locate and assess problems within the Insight system. Each time the system is turned on, it performs a self-test that lasts approximately 6 seconds.

Faults detected during the self-test are indicated on the display console:

“WARNING SYSTEM FAULT!” will display at the bottom of the text window.

To view the fault codes, press and hold the (i) button as shown.

The faults will be listed across the bottom of the text window.
2.3.1 Group “A” Fault Codes

Group “A” fault codes represent faults detected for analog sensors.

NOTE: Always investigate “B” and “C” faults before continuing with “A” and “D” faults.

The following chart details all the available codes in the left column and the actions to take in the right column.

<table>
<thead>
<tr>
<th>FAULT CODE</th>
<th>SWING SENSOR</th>
<th>BOOM ANGLE SENSOR</th>
<th>EXTENSION SENSOR</th>
<th>TDX 1 ROD PRESSURE</th>
<th>TDX 0 PISTON PRESSURE</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>Refer to Replacing the Computer</td>
</tr>
<tr>
<td>002</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>Refer to Calibrating the Extension Sensor Zero, Calibrating Span of Extension and Angle, and Reeling Drum Voltage Checks.</td>
</tr>
<tr>
<td>008</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Refer to Calibrating the Angle Sensor Zero, Calibrating Span of Extension and Angle, and Reeling Drum Voltage Checks.</td>
</tr>
<tr>
<td>012</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>Refer to Calibrating the Angle Sensor Zero, Calibrating the Extension Sensor Zero, Calibrating Span of Extension and Angle, and Reeling Drum Voltage Checks.</td>
</tr>
<tr>
<td>016</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Refer to Calibrating the Swing Potentiometer, and Reeling Drum Voltage Checks.</td>
</tr>
</tbody>
</table>

2.3.2 Group “B” Fault Codes

Group “B” fault codes represent faults detected for internal analog functions and power feeds to the function kickout and anti-two block switches.

The following chart details all of the available codes in the left column and the actions to take in the right column.

<table>
<thead>
<tr>
<th>FAULT CODE</th>
<th>FKO POWER FEED</th>
<th>A2B POWER FEED</th>
<th>DISPLAY CONSOLE</th>
<th>ADC 2 INTERNAL FAULT</th>
<th>ADC 1 INTERNAL FAULT</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>008</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Refer to Checking the Reeling Drum Cable.</td>
</tr>
<tr>
<td>016</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Check Crane Circuit Breakers</td>
</tr>
</tbody>
</table>
2.3.3 Group “C” Fault Codes

NOTE: Group “C” fault codes represent faults detected for internal computer memories.

The following chart details all the available codes in the left column and the actions to take in the right column.

<table>
<thead>
<tr>
<th>FAULT CODE</th>
<th>SERIAL EEPROM</th>
<th>CRANE DATA</th>
<th>RAM DUTY DATA</th>
<th>PROGRAM</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
</tr>
<tr>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reprogram the MG500 computer.</td>
</tr>
<tr>
<td>008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Erase Crane Data</td>
</tr>
<tr>
<td>016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Replace Computer</td>
</tr>
</tbody>
</table>

2.3.4 Group “D” Fault Codes

NOTE: Group “D” fault codes represent faults detected for capacity chart selection.

The following chart details all the available codes in the left column and the actions to take in the right column.

<table>
<thead>
<tr>
<th>FAULT CODE</th>
<th>WRONG SWING AREA</th>
<th>WRONG BOOM LENGTH</th>
<th>CHART NOT FOUND</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
</tr>
<tr>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td>X Check other sensor faults first, Reselect CRANE SETUP</td>
</tr>
<tr>
<td>002</td>
<td></td>
<td></td>
<td></td>
<td>X Boom length is out of range for selected chart. Check crane setup, boom length and extension.</td>
</tr>
<tr>
<td>003</td>
<td></td>
<td></td>
<td></td>
<td>X X Check other sensor faults first, Reselect CRANE SETUP</td>
</tr>
<tr>
<td>004</td>
<td></td>
<td></td>
<td></td>
<td>X Swing to correct working area to select chart. Check swing sensor zero position.</td>
</tr>
<tr>
<td>005</td>
<td></td>
<td></td>
<td></td>
<td>X X Swing to correct working area to select chart. Check swing sensor zero position.</td>
</tr>
<tr>
<td>006</td>
<td></td>
<td></td>
<td></td>
<td>X X Check other sensor faults first, Reselect CRANE SETUP</td>
</tr>
<tr>
<td>007</td>
<td></td>
<td></td>
<td></td>
<td>X X X Check other sensor faults first, Reselect CRANE SETUP</td>
</tr>
</tbody>
</table>
2.4 “No Fault Code” Problems

This section addresses problems not reported by the computer fault code system.

2.4.1 Anti-Two-Block Alarm (ATB)

This section gives aides diagnosing ATB alarm problems. For detailed information, schematic, and voltages, refer to ANTI-TWO-BLOCK FUNCTION OVERVIEW.

PROBLEM:

• The Anti-Two-Block alarm is continuously ON. Operating the switch at the boom head does not deactivate the alarm.

This problem suggests an open circuit between the computer ATB input and the ATB switch, or an open circuit between the computer ATB feed and the ATB switch. Check the reeling drum cable for damage. Ensure the two-block switches are correctly connected. Check the slip-ring and wiring inside the extension reel. Check the reel-to-computer cable. Check the connectors.

PROBLEM:

• The Anti-Two-Block alarm is continuously OFF (safe). Opening the switch at the boom head, by lifting the A2B weight does not activate the alarm.

This problem suggests a short circuit between the computer ATB input and the computer ATB feed somewhere between the computer and the ATB switch. Check the reeling drum cable for damage. Ensure the two-block switches are correctly connected. Check the slip-ring and wiring inside the extension reel. Check the reel-to-computer cable. Check the connectors.

2.4.2 Displayed Load or Radius Errors

This section gives direction to fault diagnosis of load and radius errors. Load or radius errors can cause early or late tripping of overload alarms. Accuracy of load is governed by the radius accuracy, and the extension, angle, and pressure sensors. Accuracy of radius (unloaded) is governed by the extension and angle sensors.

Ensure there are no system faults before continuing.
2.4.2.1 Check Boom Extension

1. Ensure the boom is fully retracted.

2. Ensure the reeling drum cable is correctly layered as a single layer across the extension reel surface. Any stacking of the cable will cause extension errors. This will cause the System to exceed the 0.5 ft tolerance allowed by the computer for boom mode selection. If the reeling drum cable is stacking on the reel, refer to CHECKING THE REELING DRUM CABLE LAYERING.

3. Check the zero of the extension sensor with the boom fully retracted. Enter the Calibration Mode and use the “SPAN” command. Select sensor No. 2 to view the extension value in feet. The value of extension must be between -0.2 and +0.2, with the boom fully retracted. If the extension value is incorrect, refer to CALIBRATING EXTENSION SENSOR ZERO. Fully telescope the boom and ensure the displayed boom length value matches the maximum length of the boom. If the length value is incorrect, follow the EXTENSION SPAN procedure in CALIBRATING SPAN OF EXTENSION AND ANGLE.

2.4.2.2 Check Boom Angle

NOTE: The required accuracy of measured angles is within 0.2°. When taking boom angle measurements use a good quality inclinometer. Many inclinometers are only accurate at 0° (level). Ensure the digital inclinometer is securely mounted to the boom.

1. Fully retract the boom.

2. Use an inclinometer to set the boom to 0° (zero) and ensure the displayed boom angle value is 0.0°. If the angle value is not 0.0°, refer to CALIBRATING THE ANGLE SENSOR ZERO.

3. Raise the boom to a high angle (at least 70°) and measure the angle with the inclinometer. Ensure the displayed angle matches the inclinometer reading within 0.2°. If the displayed angle is incorrect, refer to CALIBRATING SPAN OF EXTENSION AND ANGLE.

2.4.2.3 Check Main Boom Radius

NOTE: The required accuracy of taped radius measurements is within +0.5 feet. When taking radius measurements use a good quality tape that does not stretch. The tape should be graduated in feet and tenths of a foot. Always measure between the swing center of the crane and the hook line, using a single part of line with the crane centered over front (rough terrain) or centered over rear (truck crane).

1. Fully retract the boom and ensure the crane configuration is correctly set up.

2. Raise the boom to about 45° and measure the radius. The measured radius must match the displayed radius within +0.5 ft. If it does not match, refer to CALIBRATING THE ANGLE SENSOR ZERO.

3. Raise the boom to a high angle (at least 60°) and measure the angle with the inclinometer. Ensure the displayed angle matches the inclinometer reading within 0.2°. If the displayed angle is incorrect, follow the angle span calibration procedure in CALIBRATING SPAN OF EXTENSION AND ANGLE.
2.4.2.4 Check Pressure Sensors

There are two pressure sensors installed as part of the system. Both pressure sensors are mounted within the computer unit. One is connected to the piston side of the boom hoist cylinder via flexible hose; the other is connected to the rod side of the boom hoist cylinder via flexible hose. Both hoses are protected by velocity fuses within the boom hoist cylinder valve block on the end of the cylinder.

The pressure sensor located on the piston side, is subject to the hydraulic pressure needed to support the weight of the boom, any attachments, and the load. The pressure sensor on the rod side monitors the pressure necessary to control the down motion of the boom. The computer unit uses this information (along with other sensors such as extension, length, and angle), to compute the weight of the suspended load. The maximum continuous working pressure for the sensors is 250 bar (3625 PSI).

The pressure sensing system is calibrated at the factory. Pressure sensors may not be individually replaced. Any serious problem will necessitate changing the entire computer unit.

1. Lower the boom until the boom hoist cylinder is fully retracted and on its stop.
2. Loosen the hydraulic connections to the pressure sensors to ensure zero pressure is present on the sensors.
3. Enter the calibration mode and press “Menu Up” to access “14 PRESSURE MONITOR” to view both sensor pressures and net pressure.
4. Check the pressure values of both sensors. The pressure values should be between -75 and +75 PSI. If not, replace the computer unit.
5. Check the nett pressure value. This should be between -35 and +35 psi. If not, replace the computer unit.

WARNING!

3.1 Computer Unit Overview

The computer unit is the center of the system. It reads the sensors, controls computations and disconnect functions, and communicates with the display console/internal bar graph.

Two hydraulic pressure sensors are contained within the unit. These sensors, as well as the computer are factory pre-calibrated as a unit and may not be replaced in the field.

3.2 Computer Unit Layout

![Diagram of computer unit layout]

NOTE: Due to differences in computer unit configurations, the locations of board components may vary.

3.3 Internal Status Indicators

The computer unit contains a row of LED indicators for checking computer operation. During normal operation, all LEDs will be illuminated with the COMM indicator blinking. If not, please contact Technical Support for assistance. Use the following chart and preceding images for LED location.

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>Communication Indicator TST0</td>
</tr>
<tr>
<td>D8</td>
<td>Battery Power_POS</td>
</tr>
<tr>
<td>D9</td>
<td>Communication Indicator TST1</td>
</tr>
<tr>
<td>D10</td>
<td>+VP</td>
</tr>
<tr>
<td>D11</td>
<td>+10V</td>
</tr>
<tr>
<td>D12</td>
<td>COMM (Communication Indicator)</td>
</tr>
<tr>
<td>D13</td>
<td>+8V2</td>
</tr>
<tr>
<td>D14</td>
<td>+5V</td>
</tr>
<tr>
<td>D17</td>
<td>+3V3</td>
</tr>
</tbody>
</table>
3.4 Function Kickout Fuse (Fus1)

The computer unit contains a standard 10-amp replaceable fuse. The fuse protects the function kickout circuit and relay contacts, if a short circuit occurs across the crane kickout solenoids. Replace the fuse, if the system error codes indicate that the function kickout power feed is missing. Ensure the crane circuit breaker is closed and power from the crane is present.

NOTE: Prior to replacing the fuse, ensure any electrical shorts which may have caused the failure of the original fuse have been removed.

3.5 Replacing the Computer Unit

Computer Removal

1. Lower the boom until the boom hoist cylinder is completely retracted and on its stop or the boom is firmly in the boom rest.
2. Disconnect the hydraulic connections at the computer unit.
3. Disconnect the electrical connectors at the computer unit.
4. Remove the hardware securing the computer to the cab wall.

Computer Installation

1. Secure the computer unit to the cab wall with the mounting hardware.
2. Ensure the electrical connections face downward.
3. Connect the electrical connectors.
4. Remove the protective caps from the hydraulic ports.
5. Connect the base-side pressure (green band) hose to the piston pressure port.
6. Connect the rod-side pressure (red band) hose to the rod pressure port.
4.1 Display Console Overview

The Display Console allows the user to see the crane values and crane configuration selection. The display also provides calibration functions used for testing and fault diagnosis.

![Display Console Image]

4.2 Checking the Display Console

When operated under extreme conditions the console can become damaged. The damage is not always apparent. To help identify subtle faults that are sometimes difficult to find, please review sections 4.3 through 4.6.

4.3 Unresponsive Buttons

All button options are not available for use at all times. It is important to verify that the non-responsive button:

- Is programmed to respond during the operation of the system.
- Being pressed in the center, pressing the printed symbol ‘at one end’ may not activate the switch underneath.
- Is not damaged or has a surface that is worn which may cause the switch underneath to operate improperly. In this case, refer to REPLACING THE DISPLAY CONSOLE.
4.4 Connectors

There are four, 6-pin Deutsch connectors on the rear of the Insight. The ports, left-to-right, are D, C, B, A.

4.5 Horn

Ensure the horn is connected to the wiring harness via the two-pin Deutsch connector.

4.6 Moisture

The display console conforms to the IP67 standard for protection against dust and water, when correctly installed.
4.7 Replacing the Display Console

Removal

1. Disconnect the electrical cable from the rear of the Insight display.
2. Remove the knob on each side of the console and retain for future use.
3. Remove the defective display console from the bracket in the cab.
4. Remove the gimbal mount on the back of the defective display.

Installation

1. Install the gimbal mount on the back of the new display.
2. Put the Insight display on the bracket located in the cab, by positioning it between the bracket legs.
3. Insert and tighten the knob on each side of the console.
4. Connect the electrical cable to the rear of the console.
5.1 Calibration Mode

The Greer Insight system is an aid to crane operation. Use this system with an operator trained in safety guidelines, crane capacity information, and the crane manufacturer’s specifications.

When the computer is new, it has no zero or span calibrations. It is necessary to enter zero and span settings for accurate length and angle calculations.

Tools Needed:
- Digital level accurate to 0.1°
- 150-200ft. tape measure graduated in tenths of a foot
- Digital multimeter

Pre-Requisites for Calibration
- The crane must be properly set on level ground per the manufacturer’s specifications.
- Maximum boom height will be needed. It is necessary the area is free of overhead obstructions.
- All options such as jibs, fly’s, and auxiliary heads must be configured in the computer.

NOTE: If the Greer computer is reprogrammed, access the “01 Crane Data” menu and ensure “Personality not in Use” is indicated. If this message is not present, press the “Menu Up” button, then press the “Erase Pers. and use ROM data” button to ensure a customized personality is not in use.
5.2 Entering the Calibration Mode

Follow these steps to ensure proper calibration. The actual crane setup must be reflected on the display. Check the Greer Insight Operator’s Manual for proper setup of the display unit.

1. To enter Calibration Mode, the display must be in “Normal Operating” mode.
2. Press the calibration button.
3. Enter the Security Code within 5 seconds, or the system will revert to the “Normal Operating” mode. The numbers in parenthesis indicate the proper order to press the buttons.
5.3 Calibration Menus

After entering the calibration menu, scroll through the menu options by pressing the “Menu Up” or “Menu Down” buttons. To select an item, press the button adjacent to the menu listing as shown in the example.

The main menu items used to calibrate the system are:

- 02 Zero Sensors
- 03 Span Sensors

The only calibrations needed are for the boom extension function and the boom angle function. They must be properly set to zero. Boom extension and angle readings are dependent on the correct span values to be entered into the system. These span values are determined by using a digital level on the boom angle, and measuring the span of boom extension.

The circled buttons do not work in the calibration menu. Press the “Exit” button to exit the calibration menu.
5.4 Calibrating the Extension Sensor Zero

1. Fully retract and lower the boom to 0.0. Verify using a digital level.
2. Remove the reeling drum cover to expose the baseplate sensory assembly.
3. Rotate the extension sensor gear clockwise until the clutch drags/clicks, and rotate a ½ turn counterclockwise.
4. The voltage reading between the blue wire TB1-1 and the white wire TB1-3 on the terminal block should measure 0.15 to 0.35 volts. If outside this voltage, rotate the gear to attain proper voltage with the boom fully retracted.

5. Press the “Menu Up” button until “02 Zero Sensors” is reached.
6. Press the “02 Zero Sensors” button.
7. Press the “Zero Extension” button.

8. Press the “Yes! Calibrate!” button to calibrate the Zero.

9. Extension sensor zero calibration is complete.
5.5 Calibrating the Angle Sensor Zero

The angle sensor is preset to zero on the potentiometer before leaving the factory. If the potentiometer is disturbed, the zero setting can be affected. If this happens, the angle sensor will be inaccurate.

If the factory setting has been disturbed, reestablish it by loosening the attaching screws, and rotating the pot until the desired voltage reading is attained.

1. Place the boom at 0.0 degrees. Verify using a digital level.
2. Check the voltage between TB1-1 and TB1-2. It should measure between 0.400V and 0.600V.
3. Press the “Menu Up” button to display the “02 Zero Sensors” menu.
4. Press the “02 Zero Sensors” button.
5. Press the “Menu Up” button to display “Zero Angle.” The boom angle window should read “0.0”.
6. Press the “Zero Angle” button.

7. Press the “Yes! Calibrate!” button.

8. The angle sensor zero routine is complete.
5.6 Calibrating Span of Extension

WARNING!
THE AREA OVERHEAD ABOVE THE CRANE MUST BE CLEAR OF OBSTRUCTIONS PRIOR TO CALIBRATING SPAN OF EXTENSION AND ANGLE!

Extended Length – Retracted Length = Span

In order for the system to properly calculate the boom length, the extension of the boom must be “spanned” in the computer.

1. Enter the calibration menu.
2. Press the “Menu Up” button until “03 Span Sensors” is displayed.
3. Press the “03 Span Sensors” button.
4. Fully extend the boom.
5. Press the “Span Extension” button.

6. Press the “Yes! Calibrate!” button.

7. The extension span procedure is now complete.
5.7 Calibrating Span of Angle

WARNING!
THE AREA OVERHEAD ABOVE THE CRANE MUST BE CLEAR OF OBSTRUCTIONS PRIOR TO CALIBRATING SPAN OF EXTENSION AND ANGLE!

In order for the system to properly calculate the boom angle, the angle of the boom must be “spanned” in the computer.

1. Raise the boom to between 60° and 65°. Verify with a digital inclinometer.
2. Enter the calibration menu.
3. Press the "Menu Up" button until “03 Span Sensors” is displayed.
4. Press the “03 Span Sensors” button.
5. Press the “Menu Up” button to display “Span Angle”.
6. Press the “Span Angle” button.
7. Use the following screen to enter the number from the digital level. Always enter numbers with a decimal point.

![Calibration Screen]

4,700 lbs 70.0 lbs
43.7 ft 63.2 lbs
43.7 ft 31.7 lbs
43.7 ft 0 lbs

- UPPER LEFT
- LOWER LEFT
- UPPER RIGHT
- LOWER RIGHT
8. The lower left and lower right buttons are used to select the number. The number inside the brackets is the current selection, in the above image, the number 3 is between the brackets.
9. Use the upper left button to enter the numbers, one at a time.
10. When the number is entered, press the upper right button to enter the number into the system memory. Once entered the extension and span calibration routine is complete.
5.8 Rope Limits

This menu allows the Rope Limit to be edited.

1. In the calibration menu, press the Menu Up or Menu Down button until “08 Rope Limits” is displayed. Press the 08 Rope Limits button.

2. To edit the current rope limit, press the Modify button.

3. This accesses the edit screen. Enter the number in thousands of pounds. For example, enter 12,000lbs as “12”.
 a. (1) – Use this button to enter each individual number.
 b. (2) – Use this button to change the selection to the left.
 c. (3) – Use this button to enter the number when complete.
 d. (4) – Use this button to change the selection to the right.

4. After the number is entered, ensure the current value is correct. Press the Exit button to return to the calibration menu.
5.9 After the Calibration Routine

When the calibration routine is complete, thoroughly test the unit to ensure the radius on the unit is accurate to +.5 of a foot.

In order to perform load testing, a known weight is necessary. Perform testing from 2-3 different boom angles, as well as extensions.

The load shown must be within 0 to +10% when testing. If the load is outside these limits, the calibration should be rechecked for accuracy. The displayed load must always be equal to or higher than the actual load.
6.1 Reeling Drum Overview

The primary operation of the reeling drum is to measure the extension of the telescoping sections of the main boom. The reeling drum also includes an angle sensor to measure the main boom angle along with an electrical slip-ring which transfers the two-block signal from the reeling drum cable to the system computer. It is important the setup these devices is performed correctly. Incorrect maintenance can result in system calculation errors.
6.2 Checking the Reeling Drum Cable Layering

The extension reel is designed to provide accurate measurement of boom extension. To provide accurate measurement, the reeling drum cable must form a single flat layer across the surface of the extension reel as the boom is telescoped in and out. Any stacking of the cable will cause extension errors as the boom retracts.

1. Telescope the boom fully out and then fully in.
2. Ensure the reeling drum cable forms a flat single layer across the surface of the extension reel, with each successive turn of cable lying next to the last.

NOTE: If any stacking or build up of the cable occurs, ensure the first cable guide at the top of the boom root section is correctly aligned with the outside edge of the extension reel. Clean the reeling drum cable and lubricate it with a silicone spray.
6.3 Sensor Baseplate Assembly

The sensor baseplate assembly supports and connects the extension and angles sensors. It also supports the two-block switch signal and signal cable to the computer.

Electrical or mechanical failure of either the angle sensor or the extension sensor potentiometers cannot be repaired in the field. The angle sensor pendulum is factory set on the potentiometer shaft and the extension potentiometer gear contains a protection clutch which is difficult to replace in the field. In the event of failure of either item, replace the entire sensor baseplate assembly.

The terminal block (TB1) mounted on the assembly provides wiring connection for all internal parts of the reeling drum and Reel-to-Computer cable. Most electrical diagnoses of the boom sensors can be made at this terminal block.

If problems occur with the two-block alarm operation, angle, or extension sensor, refer to the following chart. Follow the Boom Position/Action column before performing any voltage checks. Measure all voltages with a digital voltmeter set to DC volts range.

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>BOOM POSITION/ACTION</th>
<th>VOLTAGE</th>
<th>VOLTMETER CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>SENSOR DRIVE</td>
<td>-</td>
<td>+4.7V</td>
<td>+5.3V</td>
</tr>
<tr>
<td>ANGLE SENSOR OUTPUT</td>
<td>0 degrees</td>
<td>0.4V</td>
<td>0.6V</td>
</tr>
<tr>
<td>EXTENSION SENSOR OUTPUT</td>
<td>0 ft. FULL RETRACTED</td>
<td>0.15V</td>
<td>0.35V</td>
</tr>
<tr>
<td>TWO-BLOCK DRIVE</td>
<td>A2B WEIGHT DOWN</td>
<td>5.5V</td>
<td>7.5V</td>
</tr>
<tr>
<td></td>
<td>A2B WEIGHT UP</td>
<td>9.5V</td>
<td>10.5V</td>
</tr>
<tr>
<td>TWO-BLOCK SIGNAL</td>
<td>A2B WEIGHT DOWN</td>
<td>5.5V</td>
<td>7.5V</td>
</tr>
<tr>
<td></td>
<td>A2B WEIGHT UP</td>
<td>0V</td>
<td>2V</td>
</tr>
</tbody>
</table>
Reeling Drum Board Wiring
6.4 Anti-Two-Block Function Overview

The computer supplies a protected positive feed to the Anti-Two-Block switches at the boom/jib head via the reeling drum cable, slip-ring, and reel-to-computer cable. With the Anti-Two-Block weight hanging freely on the switch, the switch contact is closed and the signal return to the computer is high. When the weight is lifted by the hook block, the switch contact is opened, and the computer will sense a low signal input from the A2B signal return.

Since the computer checks the protected feed voltage internally, the system is capable of detecting a short circuit of the feed (or the ATB signal return when the switch is closed) to the crane chassis. Fault codes are defined in Fault Reporting and Fault Codes. Most problems with the ATB circuit may be identified through inspection of cables, switches, and the reeling drum. Damage to these parts may result in continuous or intermittent A2B alarms.

6.5 Checking the Reeling Drum Cable

The outer braid of the cable carries the Anti-Two-Block feed to the switches. If the cable sheath is damaged, this may cause a short circuit to the boom/chassis and indicate a fault code of “B008” (Refer to Group “B” Fault Codes). The same fault code will be indicated if the A2B switch is closed and the inner core of the cable is shorted to the chassis at some point in the wiring.

1. Carefully inspect the reeling drum cable for wear.
2. Check for signs of damage to the outer sheath of the cable.
3. Check for any signs of severe “kinking” or crushing of the cable.

6.6 Checking the Anti-Two-Block Circuit

Before continuing, ensure the connections are correct at the A2B switches on the boom head/jib. This procedure checks the ATB circuit when no power is applied to the circuit, use the diagram on the following page.

1. Remove the extension reel cover.
2. Disconnect the slip-ring arm from the plug by pulling it away from the center of the reel.
3. Close the A2B switch at the boom head by suspending the weight from it or pulling on the chain.
4. Measure the resistance between TB2-1 & TB2-2 terminal connections on the sensor arm.
5. With the A2B switch closed, the resistance should be less than 300 ohms. If not, inspect the reel-off cable, A2B switch, and the boom head connectors for an open circuit.
6. Open the A2B switch at the boom head by lifting the weight.
7. Measure the resistance between TB2-1 & TB2-2 terminal connections on the sensor arm.
8. With the A2B switch open, the resistance should be greater than 10,000 ohms. If not, inspect the reeling drum cable, A2B switch, and the boom head connectors for a short circuit.
Reeling Drum Board and ATB Switch Wiring
Consider Yourself Warned. ™

11135 South James • Jenks, OK 74037
Phone: (918) 298-8300
Fax: (918) 298-8301

Greer Company is a part of TWG.

www.team-twg.com

As a leader in product innovation, Greer Company is committed to the ongoing improvement of its equipment. We reserve the right to make changes to our products without notice.

©2013 TWG. All rights reserved.